The Julia Set of a Post-critically Finite Endomorphism of Pc

نویسنده

  • VOLODYMYR NEKRASHEVYCH
چکیده

We construct a combinatorial model of the Julia set of the endomorphism f(z, p) = ((1 − 2z/p), (1− 2/p)) of PC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mating, Paper Folding, and an Endomorphism of Pc

We are studying topological properties of the Julia set of the map F (z, p) = (( 2z p+1 − 1 )2 , ( p−1 p+1 )2) of the complex projective plane PC2 to itself. We show a relation of this rational function with an uncountable family of “paper folding” plane filling curves..

متن کامل

Critically Finite Maps and Attractors On

We first study the structure of the post-critical set of critically finite maps on P and show that the Julia set for a k−critically finite map is the whole of P. We then study a specific k−critically finite map and show that the only non-empty closed backward invariant subset is the whole of P . Based on this result, we give an example of a holomorphic map on P that has a chaotic nonalgebraic a...

متن کامل

Sur Les Applications De Lattès De P

Let f be a polynomial endomorphism of degree d ≥ 2 of C k (k ≥ 2) which extends to a holomorphic endomorphism of P k. Assume that the maximal order Julia set of f is laminated by real hypersurfaces in some open set. We show that f is homogenous and is a polynomial lift of a Lattès endomorphism of P k−1 .

متن کامل

The Fatou Set for Critically Finite Maps

It is a classical result in complex dynamics of one variable that the Fatou set for a critically finite map on P consists of only basins of attraction for superattracting periodic points. In this paper we deal with critically finite maps on P. We show that the Fatou set for a critically finite map on P consists of only basins of attraction for superattracting periodic points. We also show that ...

متن کامل

Combinatorial Models of Expanding Dynamical Systems

We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined “Julia set” of the generalized dynamical systems depend only on the associated iterated monodromy group. Many examples, in particular models for a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008